On geometric optics and surface waves for light scattering by spheres
نویسندگان
چکیده
A geometric optics approach including surface wave contributions has been developed for homogeneous and concentrically coated spheres. In this approach, a ray-by-ray tracing program was used for efficient computation of the extinction and absorption cross sections. The present geometric-optics surface-wave (GOS) theory for light scattering by spheres considers the surface wave contribution along the edge of a particle as a perturbation term to the geometric-optics core that includes Fresnel reflection–refraction and Fraunhofer diffraction. Accuracies of the GOS approach for spheres have been assessed through comparison with the results determined from the exact Lorenz–Mie (LM) theory in terms of the extinction efficiency, single-scattering albedo, and asymmetry factor in the size–wavelength ratio domain. In this quest, we have selected a range of real and imaginary refractive indices representative of water/ice and aerosol species and demonstrated close agreement between the results computed by GOS and LM. This provides the foundation to conduct physically reliable light absorption and scattering computations based on the GOS approach for aerosol aggregates associated with internal and external mixing states employing spheres as building blocks. & 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
Simulation of Surface Plasmon Excitation in a Plasmonic Nano-Wire Using Surface Integral Equations
In this paper, scattering of a plane and monochromatic electromagnetic wave from a nano-wire is simulated using surface integral equations. First, integral equationsgoverning unknown fields on the surface is obtained based on Stratton-Cho surface integral equations. Then, the interaction of the wave with a non-plasmonic as well as a palsmonic nano-wire is considered. It is shown that in scatter...
متن کاملScattering of light by large nonspherical particles: ray-tracing approximation versus T-matrix method.
We report, for the f irst time to our knowledge, comparisons of light-scattering computations for large, randomly oriented, moderately absorbing spheroids based on the geometric-optics approximation and the exact T-matrix method. We show that in most cases the geometric-optics approximation is (much) more accurate for spheroids than for surface-equivalent spheres and can be used in phase functi...
متن کاملPhase matrix for light scattering by concentrically stratified spheres: comparison of geometric optics and the "exact" theory.
We have developed a hit-and-miss Monte Carlo geometric ray-tracing program to compute the scattering phase matrix for concentrically stratified spheres. Using typical refractive indices for water and aerosols in the calculations, numerous rainbow features appear in the phase matrix that deviate from the results calculated from homogeneous spheres. In the context of geometric ray tracing, rainbo...
متن کاملStudy of Air Bubble Induced Light Scattering Effect On Image Quality in 193 nm Immersion Lithography
As an emerging technique, immersion lithography offers the capability of reducing critical dimensions by increasing numerical aperture (NA) due to the higher refractive indices of immersion liquids than that of air. Among the candidates for immersion liquids, water appears to be an excellent choice due to its high transparency at a wavelength of 193 nm, as well as its immediate availability and...
متن کاملCalculation of the Induced Charge Distribution on the Surface of a Metallic Nanoparticle Due to an Oscillating Dipole Using Discrete Dipole Approximation method
In this paper, the interaction between an oscillating dipole moment and a Silver nanoparticle has been studied. Our calculations are based on Mie scattering theory and discrete dipole approximation(DDA) method.At first, the resonance frequency due to excitingthe localized surface plasmons has been obtained using Mie scattering theory and then by exciting a dipole moment in theclose proximity of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010